Divergence of Pumilio/fem-3 mRNA binding factor (PUF) protein specificity through variations in an RNA-binding pocket.
نویسندگان
چکیده
mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species.
منابع مشابه
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization.
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. Here ...
متن کاملA protein.protein interaction platform involved in recruitment of GLD-3 to the FBF.fem-3 mRNA complex.
The Pumilio and FBF (PUF) family of RNA-binding proteins interacts with protein partners to post-transcriptionally regulate mRNAs in eukaryotes. The interaction between PUF family member fem-3 binding factor (FBF) and germline development defective-3 (GLD-3) protein promotes spermatogenesis in Caenorhabditis elegans by increasing expression of the fem-3 mRNA. Defined here in these studies is th...
متن کاملPatterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site.
mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distin...
متن کاملStructural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein.
Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to con...
متن کاملModular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA
BACKGROUND Due to their modular repeat structure, Pumilio/fem-3 mRNA binding factor (PUF) proteins are promising candidates for designer RNA-binding protein (RBP) engineering. To further facilitate the application of the PUF domain for the sequence-specific RBP engineering, a rapid cloning approach is desirable that would allow efficient introduction of multiple key amino acid mutations in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 9 شماره
صفحات -
تاریخ انتشار 2012